—— UNIVERSITY
RICHMOR}

CMSC 240 Software Systems
Fall 2023

Development




Today

 Inheritance
* Polymorphism
« Virtual functions

e Pure virtual functions and
abstract classes




Today

e Inheritance
* Polymorphism
« Virtual functions

e Pure virtual functions and
abstract classes




Inheritance

» Suppose you will define classes to model cats, dogs, and birds

* These classes have many common features
« What is the best way to design these classes to avoid redundancy?

 Object-oriented programming allows you to define new classes
from existing classes

 This is called inheritance




Superclasses and Subclasses

- Inheritance enables you to define a general class (i.e.,, a
superclass) and later extend it to more specialized classes (i.e.,
subclasses

A subclass inherits from a superclass
 For example, both a dog and a cat are animals
e Animal iS a superclass
* Dog is a subclass of Animal
e Cat is a subclass of Animal

* This is an example of an is-a relationship
* Dog iS-a Animal
* Cat iS-a Animal




Animal

- hame: string
- age: int

SU perCIaSS - favoriteFood : string

+ Animal(name: string, age: int)

+ eat()
+ setFavoriteFood(food: string)
+ speak()
- sleep()
N N
ﬂ'is a)) ﬂ'is a))

Dog Cat

- height: float - whiskerLength: float

Su bCIasseS - dogBreed: string - numberOfLives: int
+ Dog(name: string, age: int, height: float) + Cat(name: string, age: int, whiskerLength: float)
+ setDogBreed(breed: string) + setNumberOfLives(num: int)

+ speak() + speak()




Superclasses and Subclasses

* A subclass inherits accessible data fields and methods from its
superclass and may also add new data fields and methods

A subclass is not a subset of its superclass
A subclass usually contains more information and methods

* For example
 Animal has a hame, age, and favorite food

« Cat also has whisker length, and number of lives
* Dog also has height, and a dog breed




Superclasses and Subclasses

» A superclass is also called a “parent class” or “base class”
A subclass is also called a “child class” or “derived class”

* A child class inherits from a parent class

* A subclass extends a superclass

e A derived class derives from a base class




Superclasses and Subclasses

» Remember, a class defines a type

* A type defined by a subclass is called a subtype, and a type defined
by its superclass is called a supertype

* For example
* Cat is a subtype of Animal, and
« Animal iS a supertype of Dog




Inheritance

class BaseClass public

1
// «.. code for the base class prc_>tected
¥ private

class DerivedClass : access_specifier BaseClass

{

// ... code for the derived class

&




Access Control with Inheritance

Public Inheritance

- public members of the base class
»become public members of the derived class

- protected members of the base class
»become protected members of the derived class

- private members of the base class are
»not accessible directly from the derived class




Access Control with Inheritance

Protected Inheritance

* both public and protected members of the base class
»become protected members of the derived class

- private members of the base class are
»not accessible directly from the derived class




Access Control with Inheritance

Private Inheritance

- both public and protected members of the base class
»become private members of the derived class

- private members of the base class are
»not accessible directly from the derived class




Constructor and Destructor in Inheritance

* When creating an object of the derived class, the base class's
constructor is called first, followed by the derived class's
constructor

» Conversely, when the object is destroyed, the derived class's
destructor is called first, followed by the base class's destructor



J

v

1 #include <iostream>

2 using namespace std;

3

4 (liclass Parent

5 {

6 public:

7 Parent()

8 {

9 cout << "1. Parent class under construction." << endl;
10 }

11 K};

12

13 class Child : public Parent // Child inherits from the Parent
14 A

15 public:

16 Child()

17 {

18 cout << "2. Child class under construction." << endl;
19 }

20 b

N\

22 int main()

23 {

24 // Create a new instance of the child class.

wemmlp Child childInstance;

26}



1 #include <iostream>

2 using namespace std;

3

4 class Parent

5 {

6 public:

7 Parent()

8 {

9 cout << "1. Parent class under construction." << endl;
10 ¥
11 b
12
13 class Child : public Parent // Child inherits from the Parent
14 {

15 public:

16 Child()

17 {

18 cout << "2. Child class under construction." << endl;
19 }
i & 1. Parent class under construction.
22 int main() 2. Child class under construction.
23 {
24 // Create a new instance of the child class.
25 Child childInstance;

N
o
e




Ask a question




Today
Inheritance

* Polymorphism

« Virtual functions

e Pure virtual functions and
abstract classes




Polymorphism

 Polymorphism is a foundational concept in object-oriented
programming that enables objects of different classes to be
treated as objects of a common super class

* The term "polymorphism" is derived from Greek and means
"having multiple forms"

* At its core, polymorphism allows one interface to represent
many different types of objects or methods



Polymorphism

 Remember, a class defines a type

* A type defined by a subclass is called a subtype, and a type
defined by its superclass is called a supertype

* For example
* Dog is a subtype of Animal, and

 Animal iS a supertype for Cat
* Polymorphism means that a variable of a supertype can refer to

a subtype object
« For example, an Animal could be used to refer to a Cat or Dog




Polymorphism

* An object of a subtype can be used wherever its supertype

value is required
// Create a dog and a cat.

Dog woofer{"Woofer", 3, 36.4};
Cat cheddar{"Cheddar", 5, 3.1};

For example: the

animals vector s a // Create a vector of animal pointers.
list of pointers to |_ 1> vector<Animals> animals;

Animal types. But

we load it with Dog // Add addresses to a dog and a cat.
and Cat types. \ animals.push_back(&woofer);

animals.push_back(&cheddar);




Polymorphism

* An object of a subtype can be used wherever its supertype

value is required

Actual types

// Create a dog and a cat.
F=:::I::}Dog woofer{"Woofer", 3, 36.4};
Cat cheddar{"Cheddar", 5, 3.1};

Declared type

-.~..-."LL-E£EiFe a vector of animal pointers.

vector<Animalx> animals;

// Add addresses to a dog and a cat.
animals.push_back(&woofer);
animals.push_back(&cheddar);




Today
«~Inhertance
*-Potymorpris

» Virtual functions

e Pure virtual functions and
abstract classes




Virtual Functions

* The virtual keyword plays a crucial role in enabling

polymorphic behavior
« When a function is declared as virtual in a base class, it indicates
that this function can be overridden by a derived class
« When a pointer to the base class type points to an object of a derived

class, a call to a virtual function will invoke the most derived version of
that function for the actual object being pointed to

« With the virtual keyword, the function call is dynamically
bound to the appropriate version at runtime



O 0 N O U1 B W N =

10

#ifndef ANIMAL_H
#define ANIMAL_H
#include <string>

class Animal
{
public:
Animal(std::string name, int age);
void eat();
void setFavoriteFood(std::string favorite);

11wy virtual void speak();

12
13
14
15
16
17
18
19

private:
std::string name;
int age;

std::string favoriteFood;
void sleep();

#endif



Today
Inheritance
Poelymeorphism

e Pure virtual functions and
abstract classes




Pure Virtual Function

pure virtual function

* a virtual function with an = @ assignment

« indicating that there is no implementation for that function
 any concrete derived class must provide an implementation

class Animal
{
public:
Animal(std::string name, int age);
void eat();
10 void setFavoriteFood(std::string favorite);
11 meep virtual void speak() = 0;

O 00 ~J O Un




Abstract Class

 An abstract class is a class that either defines or inherits at
least one function for that is pure virtual

 You can not create an instance of an abstract class

class Animal
{
public:
Animal(std::string name, int age);
void eat();
10 void setFavoriteFood(std::string favorite);
11 ==l virtual void speak() = 0;

O 00 ~J O U




Ask a question




