
CMSC 240 Lecture 15

CMSC 240 Software Systems Development
Fall 2023

Today – Build Automation

• Compilation pipeline

• Build automation with make

Today – Build Automation

• Compilation pipeline

• Build automation with make

C++ Compilation Pipeline

Preprocessing Compilation Assembly Linking

g++ project.cpp –o project

C++ Compilation Pipeline

Preprocessing Compilation Assembly Linking

g++ -E -P project.cpp g++ -S project.cpp g++ -c project.s g++ project.o -o project

C++ Compilation Pipeline

Preprocessing Compilation Assembly Linking

Executable
Machine
Code

Source
Code (.cpp)

Preprocessed
Code (.i)

Assembly
Code (.s)

Machine
Code (.o)

C++ Compilation Pipeline

Preprocessing Compilation Assembly Linking

Executable
Machine
Code

Source
Code (.cpp)

Preprocessed
Code (.i)

Assembly
Code (.s)

Machine
Code (.o)

C++ Compilation Pipeline

.h

.cpp .s .o

.cpp .s .o

blue.cpp

red.cpp

common.h

red.s red.o

blue.s blue.o
Executable
Program

Compiler

Compiler

Assembler

Assembler

Linker

Ask a question

Give it a try!

Today – Build Automation

• Compilation pipeline

• Build automation with make

make

• The build tool make is a classic program for controlling what
gets (re)compiled and how
• Many other such programs exist (e.g. ant, maven, IDE “projects”)

• Two basic ideas of make:
1. Scripts for executing commands
2. Dependencies for avoiding unnecessary work

make
• Programmers spend a lot of time “building”
• Creating programs from source code
• Both programs that they write, and other people write

• Programmers like to automate repetitive tasks
• g++ -Wall functions.cpp calculate.cpp -o calculate

• Retype this every time
• Use up-arrow or history
• Create an alias or bash script
• Use make

Creating a “Real” Build Process
• On larger projects, you don’t want to have one big set of

commands to run every time anything is changed

• When thinking on how to do things “smarter” consider:
1. It could be worse: If g++ didn’t combine steps for you, you’d need to

preprocess, compile, and link on your own
2. Source files could have multiple outputs (e.g. generated docs)
3. Your source code should be relatively simple for others to build
4. You don’t want to recompile everything every time you make a change

Recompilation Management
• The theory behind avoiding unnecessary compilation is a

dependency graph
• To create a build target t, you need sources s1, s2, … , sn and a

command c that uses the sources
• If t is newer than every source (file-modification times),

then there is no reason to rebuild it

Target

Sources

Recompilation Management
• The theory behind avoiding unnecessary compilation is a

dependency graph
• To create a build target t, you need sources s1, s2, … , sn and a

command c that uses the sources
• If t is newer than every source (file-modification times),

then there is no reason to rebuild it
• Recursive building: if the source si is itself a build target of some other

sources, check to see if it needs to be rebuilt

Target

Sources

Example: C++ Build

• Compiling a .cpp file creates a .o file
• The .o depends on the .cpp and all included files (.h)

functions.cppfunctions.h calculate.cpp

functions.o calculate.o

calculate

Source files

Object files

Executable file

Example: C++ Build

• Creating an executable
• Linking depends on .o files

functions.cppfunctions.h calculate.cpp

functions.o calculate.o

calculate

Source files

Object files

Executable file

Example: C++ Build

• If one .cpp file changes, we just need to rebuild one .o file
• If a .h file changes, may need to rebuild more

functions.cppfunctions.h calculate.cpp

functions.o calculate.o

calculate

Source files

Object files

Executable file

Using the make command

• Defaults:
• If no –f specified, use a file named Makefile in current directory
• If no target specified, will use the first one in the makefile

$ make –f <MakefileName> target

Makefiles
• A makefile contains a bunch of triples:

• Colon after target is required
• Command lines must start with a TAB, not spaces
• Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

• Example:

target: sources
 commandTab

functions.o: functions.cpp
 g++ -c functions.cpp

Makefile Variables
• You can define variables in a makefile:

• All values are strings of text
• Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or whitespace

• Example:

• Advantages:
• Easy to change things (especially in multiple commands)
• Can also specify on the command line:

• (e.g. make calculate CC=clang CFLAGS=-g)

CC = g++
CFLAGS = -Wall -g
OBJFILES = functions.o calculate.o

calculate: $(OBJFILES)
 $(CC) $(CFLAGS) -o calculate $(OBJFILES)

Phony Targets
• “Phony Target”: a make target whose command will never

create the target

• The clean target is a convention:
• Remove generated files to “start over” from just the source
• It’s “phony” because the target doesn’t exist and there are no
• sources, but it works because:

• The target doesn’t exist, so it must be “remade” by running the command

OBJFILES = functions.o calculate.o

clean:
 rm $(OBJFILES) calculate

All Target
• all target
• Lists all the final products as sources, so “make all” builds everything

all: calculate functions.o calculate.o
 # notice no commands this time

calculate: functions.o calculate.o
 g++ calculate.o functions.o –o calculate

functions.o: functions.cpp
 g++ -c functions.cpp

calculate.o: calculate.cpp
 g++ -c calculate.cpp

Ask a question

Give it a try!

