
CMSC 240 Lecture 19

CMSC 240 Software Systems Development
Fall 2023

Today – Smart Pointers

• Smart Pointer Introduction

• unique_ptr

• shared_ptr

Dynamic Memory Allocation
• The problem: Memory resources are sometimes allocated on the

heap, and they must be released at some point

• If we forget, then we have a memory leak
• A long running program with a memory leak will slowly run out of

memory, which can kill performance
• For example: web browsers, text and code editors, web services

Dynamic Memory Allocation

• Dynamically allocating memory is not a problem if you
remember to deallocate that memory when you are done
using that memory

“A solution involving the phrase
‘just remember to’ is seldom the
best solution.”
 -- Steven Prata (C++ Primer Plus)

Dynamic Memory Allocation
• Consider: memory allocated on the stack is automatically

deallocated when it goes out of scope

• Thought: Can we somehow give ownership of a resource
allocated dynamically to an object that is deallocated
automatically

• If so, the dynamic resource can be released when the owning
resource goes out of scope (in destructor call)

Standard Example

A more subtle example…

Smart Pointers

• If pointerToString had a destructor, memory could be released in
the destructor automatically when the function returns

• But pointerToString is just an ordinary pointer, not a class object,
so it has no destructor

• If it were an object, then we could code a destructor and the memory
would be freed when the object was out of scope after the function
returns

• This is the idea behind smart pointers

C++ Smart Pointers
• A smart pointer is an object that stores a pointer to a heap-

allocated object
• A smart pointer looks and behaves like a regular C++ pointer

• By overloading *, ->, [], etc.
• These can help you manage memory

• The smart pointer will delete the pointed-to object at the right time
• When that is depends on what kind of smart pointer you use

• With correct use of smart pointers, you no longer need to
remember when to delete newly allocated memory!

A Simple Smart Pointer
• We can implement a simple smart pointer with the following:
• Constructor that accepts a pointer
• Destructor that deletes the pointer
• Overload * and -> operators that access the pointer

• A smart pointer is just a C++ Template object

A Simple Smart Pointer
• Effectively, a smart pointer is a wrapper for a raw pointer

• Access the encapsulated pointer using the operators -> and *,
which the smart pointer class overloads so that they return the
encapsulated raw pointer

A Simple Smart Pointer
• Can’t handle:
• Arrays -- (i.e. needs to use delete[])
• Copying
• Reassignment
• Comparison
• Many other details…

• Luckily, there is a standard library version of smart pointers!
• #include <memory>

Introducing: unique_ptr
• A unique_ptr is the sole owner of its managed pointer
• It will call delete on the managed pointer when it falls out of scope
• This is accomplished via the unique_ptr destructor

• Guarantees uniqueness by disabling copy and assignment

unique_ptr Cannot Be Copied
• unique_ptr has disabled its copy constructor and assignment

operator
• You cannot copy a unique_ptr, helping maintain “uniqueness” or

“ownership” of the managed pointer

unique_ptr Transferring Ownership
• Use reset() and release() to transfer ownership
• release returns the pointer, sets wrapped pointer to nullptr
• reset will delete the current pointer and stores a new one

Use Caution with get()
• Can cause double delete errors

unique_ptr and Arrays
• unique_ptr can store arrays as well
• Will call delete[] upon destruction

Introducing: shared_ptr
• A shared_ptr is similar to unique_ptr but we allow shared

objects to have multiple owners
• The copy/assign operators are not disabled and increment or

decrement reference counts as needed
• After a copy/assign, the two shared_ptr objects point to the same

pointed-to object and the (shared) reference count is 2
• When a shared_ptr is destroyed, the reference count is

decremented
• When the reference count hits 0, then we delete the pointed-

to object!

Introducing: shared_ptr
• Reference counting: a technique for managing resources by

counting and storing the number of references (i.e. pointers that
hold the address) to an object

