—— UNIVERSITY
RICHMOR}

CMSC 240 Software Systems
Fall 2023

Development

Today — Smart Pointers

®

 Smart Pointer Introduction
* unique_ptr

 shared_ptr

RICHMOND

Dynamic Memory Allocation

* The problem: Memory resources are sometimes allocated on the
heap, and they must be released at some point

* If we forget, then we have a memory leak

* A long running program with a memory leak will slowly run out of
memory, which can kill performance

» For example: web browsers, text and code editors, web services

Dynamic Memory Allocation

» Dynamically allocating memory is not a problem if you
remember to deallocate that memory when you are done
using that memory

“A solution involving the phrase
‘Just remember to’ 1s seldom the
best solution.”

-- Steven Prata (C++ Primer Plus)

Dynamic Memory Allocation

 Consider: memory allocated on the stack is automatically
deallocated when it goes out of scope

» Thought: Can we somehow give ownership of a resource
allocated dynamically to an object that is deallocated

automatically

» If so, the dynamic resource can be released when the owning
resource goes out of scope (in destructor call)

Standard Example

int leakyFunction()
{

stringx pointerToString = new string("Leak");

/* ... Some processing ... x/

return 0;

A more subtle example...

int leakyFunction2()
{
stringx pointerToString = new string("Leak");

/* ... SOme processing ... x/

try
{
char ch = pointerToString—>at(50);
}
catch (out_of_range exception)
{

cerr << "Caught an out_of_range error:
throw exception;

return 0;

delete pointerToString;
by

<< exception.what() << endl;

Smart Pointers

 If pointerToString had a destructor, memory could be released in
the destructor automatically when the function returns

* But pointerToString is just an ordinary pointer, not a class object,
so it has no destructor

« If it were an object, then we could code a destructor and the memory

would be freed when the object was out of scope after the function
returns

 This is the idea behind smart pointers

C++ Smart Pointers

» A smart pointer is an object that stores a pointer to a heap-
allocated object

« A smart pointer looks and behaves like a regular C++ pointer
* By overloading *, ->, [], etc.

» These can help you manage memory
* The smart pointer will delete the pointed-to object at the right time
« When that is depends on what kind of smart pointer you use

« With correct use of smart pointers, you no longer need to
remember when to delete newly allocated memory!

A Simple Smart Pointer

« We can implement a simple smart pointer with the following:
 Constructor that accepts a pointer
 Destructor that deletes the pointer
» Overload * and -> operators that access the pointer

* A smart pointer is just a C++ Template object

VYV YY VW

template <typename T>
class SimpleSmartPointer

{
public:
// Constructor will initialize the pointer of type T.
SimpleSmartPointer(Tx ptr) : pointer(ptr) { }
// Destructor for the simple smart pointer class.
// Will delete the pointer to free the memory on the heap.
~SimpleSmartPointer()
{
std::cout << "Deleting pointer..." << std::endl;
delete pointer;
}
// Override the * operator, returns the contents of the pointer.
T operatorx() { return xpointer; }
// Override the —-> operator, returns the pointer.
Tx operator—>() { return pointer; }
private:

~
-

// The actual pointer.
Tx pointer;

A Simple Smart Pointer

» Effectively, a smart pointer is a wrapper for a raw pointer

 Access the encapsulated pointer using the operators -> and *,
which the smart pointer class overloads so that they return the
encapsulated raw pointer

void processPointers()

1

“

int

=

vy YRV

// Create a regular pointer.
stringx leaking = new string("Regular");

// Create a simple smart pointer.
SimpleSmartPointer<string> notleaking(new string("Smart"));

cout << "xleaking == " << *leaking << endl;
cout << "xnotleaking == " << *notleaking << endl;
main()

// Call the processPointers function.
processPointers();

// Returned from processPointers function scope.
cout << "Back in main function." << endl;

return 0;

A Simple Smart Pointer

« Can’t handle:
* Arrays -- (i.e. needs to use delete[])
« Copying
« Reassignment
« Comparison
« Many other details...

* Luckily, there is a standard library version of smart pointers!
* #include <memory>

Introducing: unique ptr

* Aunique ptr is the sole owner of its managed pointer
o It will call delete on the managed pointer when it falls out of scope
» This is accomplished via the unique ptr destructor

« Guarantees uniqueness by disabling copy and assignment

#include <iostream>
#include <memory>

using namespace std;

void Leaky()

// A pointer to a heap—allocated integer.

{
intx rawPointer = new int(42);

/* ... some processing ... x/

cout << *xrawPointer << endl;

} // After return: Never used delete, therefore leak.

void NotLeaky()

// A smart pointer wrapped heap—allocated integer.

{
» unique_ptr<int> smartPointer(new int(25));

/* ... some processing ... x/

cout << ksmartPointer << endl;

} // After return: Never used delete, but no leak.

unique ptr Cannot Be Copied

* unique ptr has disabled its copy constructor and assignment
operator

* You cannot copy a unique ptr, helping maintain “uniqueness” or
“ownership” of the managed pointer

#include <memory>
using namespace std;

int main()

{

\/'unique_ptr<int> x(new int(5)); // Okay: constructor that takes a pointer
® unique_ptr<int> y(x); // Error: copy constructor is disabled

v/ unique_ptr<int> z; // Okay: default constructor, holds nullptr
sz X} // Error: operator= is disabled

#include <memory>
using namespace std;

int main()
{

// Create a new unique pointer to manage a pointer to a double.
unique_ptr<double> smartPointer(new double(3.141));

// Return a pointer to pointed-to object.
doublex pointer = smartPointer.get();

// Return the value of pointed-to object.
double value = xsmartPointer;

// Access a field or function of a pointed-to object

unique_ptr<pair<int, string>> pairPointer(new pair<int, string>(1, "Heap Pair"));
pairPointer—>first = 2;

pairPointer—->second = "Update Pair String"';

// Deallocate current pointed-to object and store new pointer.
smartPointer.reset(new double(2.818));

// Release responsibility of the managed pointer.
pointer = smartPointer.release();

return 0;

RARERA

unique ptr Transferring Ownership

* Use reset () and release () to transfer ownership
* release returns the pointer, sets wrapped pointer to nullptr
» reset Will delete the current pointer and stores a new one

unique_ptr<int> x(new int(5));
cout << "x: " << x.get() << endl;
// X releases ownership to y
unique_ptr<int> y(x.release());
cout << "x: << X.get() << endl;
cout << "y: << y.get() << endl;

unique ptr<int> z(new int(10));

// y transfers ownership of its pointer to z.
// z's old pointer was deleted in the process.
z.reset(y.release());

Use Caution with get ()

e Can cause double delete errors

#include <memory>
using namespace std;

void processPointers()

{

// Trying to get two pointers to the same thing
unique_ptr<int> x(new int(12));
unique_ptr<int> y(x.get());

} // Error: Double delete upon return!

unique ptr and Arrays

* unique ptr can store arrays as well
* Will call delete[] upon destruction

#include <memory>
using namespace std;

int main()

—>
—

unique_ptr<int[]> smartPointer(new int[100]);

smartPointer[0] = 1;
smartPointer[1] = 2;
smartPointer[2] = 3;

return 0;

Introducing: shared ptr

* A shared ptr is similar to unique_ ptr but we allow shared
objects to have multiple owners

« The copy/assign operators are not disabled and increment or
decrement reference counts as needed

- After a copy/assign, the two shared ptr objects point to the same
pointed-to object and the (shared) reference count is 2

* When a shared ptr is destroyed, the reference count is
decremented

* When the reference count hits 0, then we delete the pointed-
to object!

Introducing: shared ptr

* Reference counting: a technique for managing resources by
counting and storing the number of references (i.e. pointers that
hold the address) to an object

#include <iostream>
#include <memory>
using namespace std;

void function(shared_ptr<int>& shared)

shared_ptr<int> second = shared;
cout << xsecond << endl;

= 2

int main()

shared_ptr<int> first(new int(10));

function(first);

cout << xfirst << endl;

return 0;

Yl

//

//

//

//

reference

reference

reference

reference

count:

count:

count:

count:

