
CMSC 240 Lecture 21

CMSC 240 Software Systems Development
Fall 2023



Today – Build Pipeline

• Generating Documentation

• Static Analysis

• Unit Testing



Today – Build Pipeline

• Generating Documentation

• Static Analysis

• Unit Testing



Generating Documentation From Code
• Consistency & Accuracy
• Keeps documentation synchronized with code changes
• Reflects the true state of the system

• Efficiency & Time-Saving
• Reduces manual documentation effort
• Frees up developer time for core tasks

• Maintainability
• Simplifies updates as code evolves
• Facilitates knowledge transfer and onboarding

• Standardization
• Enforces uniform documentation practices
• Enhances code readability and team collaboration



Doxygen: Automated Documents for C++
• What is Doxygen?
• Tool for generating reference documentation from source code comments

• Key Features
• Supports multiple programming languages, including C++
• Generates documentation in HTML, LaTeX, RTF, and XML formats

• Benefits
• Streamlines the documentation process
• Ensures documentation consistency with the codebase

• Integration
• Easily integrates with coding environments and version control systems
• Supports collaboration by providing up-to-date code documentation



Doxygen: Automated Documents for C++
• Doxygen Overview

• A documentation generator for writing software reference documentation from 
annotated source code

• Key Annotations
• @file: Describes the name and a brief description of the file
• @class: Documents a class and provides a brief class description
• @brief: A concise description of the following element
• @param: Documents one parameter of a function
• @return: Describes what a function returns
• @throw or @exception: Describes what exceptions are thrown by a function

• How Do They Work?
• Doxygen scans the source code, parsing the annotations to generate the 

corresponding documentation sections



Doxygen: Example



Doxygen: Configuration File



Doxygen: Generating Docs



Add Document 
Generation 
to the 
Build Pipeline





Today – Build Pipeline

• Generating Documentation

• Static Analysis

• Unit Testing



Introduction to Static Code Analysis
• What is Static Code Analysis?

• A method of debugging by examining code without executing it
• Purpose of Static Code Analysis

• To detect code quality issues, security vulnerabilities, and coding standard 
violations early in development

• Key Benefits
• Improves code quality and maintainability
• Identifies potential security risks
• Saves time and resources by catching issues before runtime

• How It Works
• Uses tools to analyze the source code for patterns of known issues
• Can be integrated into IDEs and continuous integration pipelines



Introduction to Static Code Analysis
• What is CPPCheck?
• An open-source static analysis tool for C and C++ code
• Designed to detect various kinds of bugs in your code

• Key Features
• Checks for memory leaks, mismatching allocation-deallocation, and more
• Detects undefined behavior and dangerous coding constructs

• Using CPPCheck
• Run it from the command line: cppcheck [options][file(s)]
• Incorporate it into your build pipeline for regular analysis





Defects Not Found During Compile or Run



Run Static Analysis With cppcheck



Add Static 
Analysis to the 
Build Pipeline



Today – Build Pipeline

• Generating Documentation

• Static Analysis

• Unit Testing



The Two Approaches to Programming
• Approach #1
• “I wrote ALL of the code, but when I tried to compile and run it, nothing 

seemed to work!”

• Approach #2
• Write a little code (e.g., a method or small class)

• Test it
• Write a little more code

• Test it
• Integrate the two verified pieces of code

• Test it
• …



Introduction to Unit Testing
• What is Unit Testing?

• Unit testing is a software testing method where individual units of source code 
are tested to determine if they are fit for use

• Key Characteristics
• Isolates the smallest parts of a program, (i.e. functions or methods), for testing
• Usually automated to run as part of the development process

• Objective
• To ensure that each unit operates correctly

• Importance in Software Development
• Catches bugs early in the development cycle
• Helps maintain and refactor code with confidence
• Vital for ensuring the reliability and quality of the final product



Types of Software Testing

• Unit Testing
• Testing individual components or functions

• Integration Testing
• Testing combined components to determine if they function together

• System Testing
• Testing a complete and integrated software system



Unit Testing Process
1. Identify Units: Determine the smallest testable components of the software 

to be tested

2. Write Test Cases: Create test cases that cover various scenarios and edge 
cases for each unit

3. Execute Tests: Run the test cases and verify the actual output against the 
expected output

4. Analyze Results: Identify failures, debug issues, and fix the failing units

5. Repeat and Automate: Continuously write and execute unit tests as part of 
the development pipeline



Code Coverage
• Code coverage is a measure used to describe the degree to which 

the source code of a program is executed when a particular test 
suite runs 
• Types of Coverage:
• Statement Coverage: each statement in the code is run at least once
• Branch Coverage: every branch from each decision point is executed
• Path Coverage: all the paths of execution are taken within each function
• Condition Coverage: all Boolean expressions evaluated both to true and false

• Best Practices: Strive for high coverage percentage



1. Write down all 
the inputs that you 
would provide to 
completely test this 
function.

2. Write the 
corresponding 
expected outputs.



Example: isLeapYear() function 

Input Expected Output
isLeapYear(1996) true
isLeapYear(2000) true
isLeapYear(1900) false
isLeapYear(2019) false
isLeapYear(0) invalid_argument
isLeapYear(-100) invalid_argument



Unit Testing With doctest



Unit Testing With doctest





Unit Testing With doctest



Add Unit 
Testing to the 
Build Pipeline



Test-Driven Development (TDD)
• What is TDD?
• Test-Driven Development is a software development approach where 

tests are written before the code that is to be tested

• Red à Green à Refactor
• Red: Write a failing test
• Green: Write the minimal amount of code to make the test pass
• Refactor: Clean up the code while keeping the tests green

• Benefits: More maintainable code, encourages better design



Write This FIRST!


