
CMSC 240 Lecture 23

CMSC 240 Software Systems Development
Fall 2023



Today – C++ Security Risks
1. Buffer overflow

2. Integer overflow and underflow

3. Pointer initialization

4. Incorrect type conversion

5. Format string vulnerability



#1 Buffer Overflow
• Definition: Writing more data to a buffer than it can hold

• Causes: Lack of bounds checking, use of unsafe functions (strcpy, 
gets, etc.)

• Consequences: Memory corruption, unexpected behavior, security 
vulnerabilities

• Prevention: Using safe functions (strncpy, snprintf, etc.), bounds 
checking, stack canaries



#2 Integer Overflow and Underflow
• Definition: Wrapping around the maximum (overflow) or minimum 

(underflow) value of an integer type

• Causes: Arithmetic operations exceeding the limits of the data type

• Consequences: Incorrect calculations, control flow issues

• Prevention: Checking for overflow/underflow, using larger data 
types, using libraries for safe arithmetic



#3 Pointer Initialization
• Definition: Setting a pointer to a valid address before use

• Causes: Uninitialized pointers contain garbage values

• Consequences: Unpredictable behavior, crashes, security risks

• Prevention: Always initialize pointers, preferably to nullptr



#4 Incorrect Type Conversion
• Definition: Converting data between types in an unsafe manner

• Causes: Implicit conversions, C-style casts

• Consequences: Data corruption, loss of precision, security 
vulnerabilities

• Prevention: Using C++ style casts (static_cast), type-safe 
conversions



#5 Format String Vulnerability
• Definition: Using user input in format strings without proper 

sanitization

• Causes: Passing user input directly to printf like functions

• Consequences: Information leakage, arbitrary code execution

• Prevention: Never use user input as the format string, always 
specify format specifiers



Format Specifiers for printf
• %d or %i: Signed decimal integer
• %u: Unsigned decimal integer
• %f: Decimal floating point
• %e: Scientific notation using e
• %x: Unsigned hexadecimal integer
• %s: Null-terminated string
• %c: Character
• %p: Pointer address (printed in hexadecimal)



Format Specifiers for printf



Format Specifiers for printf


