
CMSC 240 Lecture 25

CMSC 240 Software Systems Development
Fall 2023



Today
• Design Patterns

• Creational Patterns
• Builder

• Structural Patterns
• Adapter



Design Patterns: What are they?
• Design patterns are typical solutions to commonly occurring 

problems in software design
• Pre-made blueprints that you customize to solve recurring design 

problems in your code
• Idea was initially applied to architecture of buildings and towns



The elements of this language are entities called 
patterns. Each pattern describes a problem that 
occurs over and over again in our environment, 
and then describes the core of the solution to 
that problem, in such a way that you can use 
this solution a million times over, without ever 
doing it the same way twice.

 -- Christopher Alexander, A Pattern Language

https://en.wikipedia.org/wiki/A_Pattern_Language


Design Patterns: What are they?
• Design patterns are a solution to a problem in a context
• Help a designer get to the right design faster



Four Essential Parts
1. Pattern Name
• Briefly describes the design problem provides a common vocabulary for 

software designers to use (e.g., Builder, Singleton, Strategy)
2. Problem
• A description of the problem that the design pattern will solve

3. Solution
• Describes what elements make up the design, their relationships and 

context
4. Consequences
• What are the results and tradeoffs 
• Allows a comparison between different design patterns to see if there is a 

better fit



Classifying Design Patterns
Purpose: what a pattern does

1. creational: concerned with creation of objects

2. structural: related to composition of classes or objects

3. behavioral: related to interaction and distribution of 
responsibility



Classifying Design Patterns

Creational Structural Behavioral
Abstract Factory
Builder
Factory Method
Prototype
Singleton

Adapter
Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Chain of Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor
Interpreter
Template



Creational Patterns
• Purpose

• abstract the process of creating objects
• make a system unaware of how objects are created, composed, and represented

• What they do
• encapsulate knowledge about which concrete classes a system uses (access 

created objects via interfaces)
• hide how instances are created

• Provide flexibility with regards to
• types of created objects
• responsibility for creation
• how and when objects are created



Creational Patterns
• Abstract Factory
• Builder
• Factory Method
• Prototype
• Singleton



Builder Pattern
1. Pattern Name

• Builder
2. Problem

• Complex objects often need detailed initialization, involving numerous fields 
• This initialization can result in large constructors with many parameters
• Can lead to initialization steps being dispersed throughout various parts of the 

client code
3. Solution

• Builder pattern suggests that you extract the object construction code out of its 
own class and move it to separate objects called builders

4. Consequences
• Produce different types and representations using the same construction code
• Isolates code for construction and representation
• Construct complex objects step by step



Builder Pattern



Builder Pattern

Product

ConcreteBuilder

buildPartA()
buildPartB()
getResult()

Director
construct()

Builder
buildPartA()
buildPartB()

Client

for all parts in structure
{

builder->buildPart()
}



Structural Patterns
• Purpose
• Explain how to assemble objects and classes into larger structures, while 

keeping these structures flexible and efficient

• What they do
• use inheritance to compose interfaces or implementations
• describe ways to compose objects to realize new functionality



Structural Patterns
• Adapter
• Composite
• Proxy
• Flyweight
• Façade
• Bridge
• Decorator 



Adapter Pattern
1. Pattern Name
• Adapter

2. Problem
• You want to use an existing class, and its interface does not match the one 

you need
3. Solution
• Use an adapter to wrap one of the objects to hide the complexity of 

conversion happening behind the scenes
• The wrapped object is not aware of the adapter

4. Consequences
• Converts the interface of a class into another interface that clients expect



Adapter Pattern

CC Wikimedia

https://upload.wikimedia.org/wikipedia/commons/e/e5/W3sDesign_Adapter_Design_Pattern_UML.jpg


Behavioral Patterns
• Purpose
• Improving communication and the assignment of responsibilities between 

objects
• Deal with object interactions and how they distribute responsibilities

• What they do
• Define the protocols or methods through which objects interact and 

communicate
• Manage complex algorithms, relationships, and responsibilities among 

interacting objects
• Reduce the tight coupling between objects, making a system more 

modular and easier to maintain or extend



Behavioral Patterns
• Chain of Responsibility
• Command
• Iterator
• Mediator
• Memento
• Observer
• State
• Strategy
• Visitor
• Interpreter
• Template


