
CMSC 240 Lecture 7

CMSC 240 Software Systems Development
Fall 2023

Today
• Classes and OOP

• Breakout design activity

• Coding a class in C++

• Breakout coding activity

Today
• Classes and OOP

• Breakout design activity

• Coding a class in C++

• Breakout coding activity

Procedural Programing

Procedural vs. Object-Oriented
• Procedural programming

- Data and operations on data are separate
- Requires passing data to methods

• Object-oriented programming
- Data and operations on data are together in an object
- Organizes programs like the real world

• All objects are associated with both attributes and activities
- Using objects improves software reusability and makes programs easier

to both develop and maintain

Design that hides the details of
how something works while still
allowing the user to access
complex functionality.

abstraction

How do we accomplish this
in C++? With classes!

A class defines a new data type
for our programs to use.

class

This sounds familiar…

A way to group
together variables of
different data types
under a single name.

struct

Then what’s the difference
between a class and a struct?

What is a Class?
• Examples of classes we’ve already seen:

- string
- vector
- array

• Every class has two parts:
- an interface specifying what operations can be performed on

instances of the class (this defines the abstraction boundary)
- an implementation specifying how those operations are to be

performed

Classes provide their users with a
public interface and separate this
from a private implementation

API: Application Programming Interface

Public Interface
Available to Users

Private Implementation
Behind the Scenes

Abstraction Boundary

API: Application Programming Interface

Public Interface
Available to Users

Private Implementation
Behind the Scenes

Abstraction Boundary

Information Hiding

The process of grouping related
information and relevant
functions into one unit and
defining where that information
is accessible.

encapsulation

Another way to think about classes…
• A blueprint for a new type of C++ object

- The blueprint describes a general structure

Another way to think about classes…
• A blueprint for a new type of C++ object
• The blueprint describes a general structure
• We can create specific instances of our class using this structure

Another way to think about classes…
• A blueprint for a new type of C++ object

- The blueprint describes a general structure
- We can create specific instances of our class using this structure

When we create an object that is our
new type, we call this creating an
instance of our class.

instance

Another way to think about classes…
• A blueprint for a new type of C++ object

- The blueprint describes a general structure
- We can create specific instances of our class using this structure

Class Instance
Student A specific student at the University of Richmond

University Richmond University in Richmond, VA, USA

Bank First National Bank of Richmond

Another way to think about classes…
• A blueprint for a new type of C++ object

- The blueprint describes a general structure
- We can create specific instances of our class using this structure

Creates an instance of the vector class
(i.e. an object of the type vector)

How do we design C++
classes?

Three main parts
• Member variables

• Member functions (methods)

• Constructors

Three main parts
• Member variables

- These are the variables stored within the class
- Usually not accessible outside the class implementation

• Member functions (methods)

• Constructors

Three main parts
• Member variables

• Member functions (methods)
- Functions you can call on the object
- numbers.push_back(3), numbers.length(), numbers.at(), etc.

• Constructors

Three main parts
• Member variables

• Member functions (methods)

• Constructors
- Gets called when you create the object
-

Three main parts
• Member variables

- These are the variables stored within the class
- Usually not accessible outside the class implementation

• Member functions (methods)
- Functions you can call on the object
- numbers.push_back(3), numbers.length(), numbers.at(), etc.

• Constructors
- Gets called when you create the object
-

How do we design a class?
We must specify the 3 parts:
1. Member variables: What variables make up this new type?

- Information associated with the new class of objects

2. Member functions: What functions can you call on a variable
of this type?

- Behavior associated with the new class of objects

3. Constructor: What happens when you make a new instance of
this type?
Classes are useful in helping us with complex programs
where information and behavior can be grouped into objects.

Design a Toaster Class
1. Member variables: What
variables make up this new type?

2. Member functions: What
functions can you call on a
variable of this type?

3. Constructor: What happens
when you make a new instance of
this type?

Breakout design activity

We must specify the 3 parts:

1. Member variables: What variables make up this new type?
- Information associated with the new class of objects

2. Member functions: What functions can you call on a variable
of this type?

- Behavior associated with the new class of objects

3. Constructor: What happens when you make a new instance of
this type?

Today
• Classes and OOP

• Breakout design activity

• Coding a class in C++

• Breakout coding activity

Creating our own class

Classes in C++
• Defining a class in C++ (typically) requires two steps:

Classes in C++
• Defining a class in C++ (typically) requires two steps:

1. Create a header file (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs

Classes in C++
• Defining a class in C++ (typically) requires two steps:

1. Create a header file (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs

2. Create an implementation file (typically suffixed with .cpp) that
contains the implementation of the class

Classes in C++
• Defining a class in C++ (typically) requires two steps:

1. Create a header file (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs

2. Create an implementation file (typically suffixed with .cpp) that
contains the implementation of the class

• Clients of the class can then include (using the #include
directive) the header file to use the class.

Design a Toaster Class
1. Member variables: What variables
make up this new type?

- heat level
- is it currently toasting

2. Member functions: What
functions can you call on a variable
of this type?

- set/get heat level
- start/stop toasting
- get toasting status

3. Constructor: What happens when
you make a new instance of this
type?
- initial heat level

Header files

What’s in a header?

This boilerplate code is called a
#include guard. It’s used to
make sure weird things don’t
happen if you include the same
header twice.

This is a class definition. We’re
creating a new class called
Toaster. Like a struct, this
defines the name of a new type
that we can use in our programs.

Don't forget to add the semicolon!

You'll run into some scary compiler errors
if you leave it out!

The public interface specifies what functions
you can call on objects of this type.

Think things like the vector.length()
function or the string.find()

The private implementation contains
information that objects of this class type will
need in order to do their job properly. This is
invisible to people using the class.

Abstraction Boundary

Public Interface
(What it looks like)

Private Implementation
(How it works)

The public member functions of
the Toaster class are functions
you can call on objects of type
Toaster.

All member functions must be
defined in the class definition. We
will implement these functions in
the C++ file.

The private data members of the
Toaster class. This tells us how
the class is implemented.
Internally we are storing a heat
level and an on/off value for
toasting. The only code that can
access or modify these values is
the Toaster implementation.

Class definition and name

Methods

Member variables

Implementation files

If we are going to implement
the Toaster type, the .cpp
file needs to have the class
definition available.

The syntax Toaster:: means
“look inside of Toaster." The ::
operator is called the scope
resolution operator
in C++ and is used to say
where to look for things.

We don’t need to specify where
the setLevel method is. The
compiler knows we are inside
of Toaster.

This use of the const keyword
means "I promise that this
method doesn't change the
state of the object."

We have to remember
to add it into the
implementation as well!

Breakout coding activity

